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P-VALUES FOR MULTI-STAGE AND SEQUENTIAL TESTS

by

Richard W. Madsen and Kenneth B. Fairbanks
University of Missouri-Columbia and Murray State University

Summary

P-values are commonly given for ordinary single stage

statistical tests. In this note we give a general method for

calculating p-values for a large class of multi-stage and

sequential tests. We also give some tables of p-values for

multi-stage tests about the parameter of an exponential dis-

tribution when test plans from MIL-STD-781C are used.

Key words: P-values, multi-stage tests, sequential tests,

exponential distribution.

1. INTRODUCTION

It is quite common for investigators to report the re-

sults of a statistical test by giving a p-value rather than

simply stating that the test was (or was not) significant

using an a-level test. However when the statistical test

used is a multi-stage test or a sequential test rather than

a single stage test, p-values are generally not given. It

is the purpose of this note to give a general method for cal-

culating p-values for a large class of multi-stage and se-

Iil
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quential tests. We also give some tables of p-values for

multi-stage tests about an exponential parameter using test

plans from MIL-STD-781C.

2. DEFINITION OF P-VALUES

Say that X is a random variable having distribution

function F(x;O). Let H denote some statistical hypothe-

sis about F, perhaps a hypothesis about 0 such as:

H : e c 0o . In the single sample case a random sample

X1 ,X2 ,... ,Xn is typically chosen from the distribution of

X and a test statistic T is calculated. A critical region

C is chosen so that

sup PIT c C a a.
9C 0

Generally C will consist of the extreme values of T, per-

haps
C = {t: t > t}.

In this case we would have Ca c Ca2 if a1 < a2.

It is at this point that the concept of a p-value may be

introduced. (Note that some authors use the term prob-

value while others use the term significance probability

instead of p-value.) Dudewicz (1976, p. 313 ) defines it

as..."the smallest a for which we would surely reject if

we observed" T= t. Bickel and Doksum (1977, p.170) and

Bhattacharyya and Johnson (1977, p.175), to name just two
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others, give similar definitions. However if we try to use

this same definition for sequential tests we run into a

problem, as we shall see.

If we consider a sequential probability ratio test

(SPRT) of a simple null against a simple alternative hy-

pothesis (Wald (1947) or Ghosh (1970)) and if Zn denotes

the value of the test statistic at stage n, then the deci-

sion boundaries, a and b, are determined by the desired

values of a and 8. The general procedure is to observe the

values of Zn sequentially and to

accept 11° if Zn < b

reject H if Zn >a

continue by observing the next value Zn+ 1 otherwise.

(See Figure 1.) The values of a and b can be found approx-

imately by taking

(1) a= tn((l-0)/a) , b t(O/(l-a)).

Rejection region
a

1 2 3 4 5 6

Kn

b -------- -

Acceptance region

Figure 1. Graphical Representation of a Sequential Test.

-%OEM
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Given a sample path as shown in Figure 1 it becomes obvi-

ous that there are difficulties in trying to extend the

definition of p-values to a sequenlial test. For one thing,

in order to find "the smallest a for which we would surely

reject" the null hypotheses, we would have to use Equations

() changing both a and b. We would then also have to know

the entire sample path and not just the value of the test

statistic at the time at which a decision is made.

If we now return to the simpler single sample test we

can find an alternative characterization of p-values which

lends itself more easily to generalization. Specifically,

"using the distribution of T under H0 , calculate the proba-

bility P* [the significance probability or p-value] of the

occurrence of the observed value or more extreme values"

(Bhattacharyya and Johnson, 1977, p.180). In order to do

this we must determine which values should be considered

more extreme than the observed value. This determination

is generally not difficult in single sample tests but is

more difficult for sequential tests.

Assume that test boundaries an, bn have been given

such that for test statistic Zn we

accept H if Zn < bo nn

reject 1° if Zn > an

continue by observing the next value Zn+ 1 otherwise.



Note that by setting bN a N we can obtain a truncated

sequential test or,equivalently, an N-stage (multi-stage)

test. If b1 = a1 we obtain an ordinary single stage test.

(In some cases the directions of the inequalities for

acceptance and rejection will have to be reversed. This

causes no real problem, however.) Our convention for

determining which values should be considered more extreme

than the observed values will be as follows:

(1) A decision to rejctL at stage n is more ex-

treme than one to reject at stage n + 1.

(2) A reject decision at stage n with observed

value zn is more extreme than a reject deci-

sion at stage n with observed value z' ifn

z > Zn .n n

(3) A decision to accept at stage n is more ex-

treme than one to accept at stage n - 1.
(4) An accept decision at stage n with observed

value z is more extreme than an accept deci-

sion at stage n with observed value z' ifn

z < Z.n n

In Figure 2 we show "decision points" dl,d 2,. ..,d6 which

are possible final observed values of a test statistic.

These points are "ordct'ed" n tho- sense that d1 is "more

extreme" than d 2 which is "more extreme" than d 3 , and so

__..__-__. ,_____ hia
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on. With this convention of determining extremeness of

the final values of the test statistic we can find p-values.

Reject regionI d  ! 1
9d. , -
I. qd3Zn / t 

continuation ijg;On

0 1 2 3 4 S n-

0d Accept region

Figure 2. Ordered Decision Points

Definition. For a sequential test, truncated or not,

with given test boundaries an, bn , if the test terminates

at stage k with observed test statistic Zk, then the p-value

is defined by

p-value = P~a test statistic as or more extreme than

zk will be observed when H is true].
k 0

If H° is composite and not simple, then the maximum proba-

bility found when H is true will be the p-value.
0

For simplicity we will assume that H is a simple

hypothesis so that we will not have to be concerned with

finding the maximum probability under H. Notationally we
0
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can define

a . = P[reject 110 at stage iIH true]1 0

= P[Continuation at stages 1,2,...i-1 and

Z1 > ailHo ].

(2) P[(bI<Z 1 < a1 ),...(bi 1 < Zi_1 < at.l)

(Z i > ai)

and for z. > a. define
10 - 1

(3) p= P[Cbl< Z< a I ) .. (bi < Zi < ail (Z > z. )IH o ]
1- 1 1 i-i- ii- o 0

The p-value for a reject decision at stage i with final

observed value z. can then be found from10

i-i
p-value = E a. + p!

j=l 1

(Note that the overall level of significance of the test

will be given by a = Ea . with the sum taken over all pos-

sible test stages. Also if a test is curtailed with re-

jection at the ith stage, the p-value will be bounded since
i-i i

E a. < p-value < Z a..)1 3 -- 3

In a similar way we define

(11) Yi I '(1)- < Z31 < 1 ),...'(b i-l < Z i-i < ati-l ) (Z i < b i ) 11o

and for zio < bi

(5) ....... Z <a ..... . ,( z <a- . --
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then the p-value for an accept decision at stage i with

final observed value z. is
1i-

p-value 1 - EY + q)(j=l Y + qI )

Here too, if the test is curtailed at an acceptance boun-

dary bounds for the p-value can be given.

If the p-value is defined in this way, then when H0

is true the distribution of the p-value will be uniform

over the interval [0, 13. This same property, of course,

holds in the single sample testing situation.

3. APPLICATION TO MIL-STD-781C TEST DESIGNS

While conceptually it is quite straightforward to use

Equations (2) - (5) to find p-values, the actual calcula-

tions will typically involve numerical integration to find

the ai, yi, etc. We will illustrate the method of finding

p-values by considering just three of the test plans given

in MIL-STD-781C (1977) where the underlying random variable

of interest has an exponential distribution. Bryant and

Schmee (1979) considered the problem of finding confidence

intervals for the parameter 8 of the exponential distribu-

tion when using these test plans. Although the method is

applicable to all test plans, we will only consider test

plans IVC, VIC, and VIIC. We will begin with Plan VIC.

Here the discrimination ratio is 3, so we may consider the



9

test of

0 0 0 1

with a = .2C (nominal values). If Xi X 2,... are inde-

pendent exponential raindom Vd'dibleS with parameter 0, then

we will use as test statistic Z X +-. . The deciion

boundaries a and b are shown in Table 1. Note that be-n n

cause of the relative magnitudes of 0 and 01 the accept-

reject regions will be interchanged, i.e. here H will be

accepted if Z > bn and rejected if Z < a . The necessary

modifications in Equations (2) to (4) are easy to make.

(.Reject boundary) (accept boundary)

i a. b.1 1

1 0 2.67

2 0.36 4.32

3 4.50 4.50

Table 1. Decision Boundaries for Test Plan VIC.

By using numerical integration we were able to find

the values of a. and yi as well as p-values for various

terminal values in the rejection region. Since the test

plans call for curtailment of the tests when an acceptance

boundary is reached it is only possible to give bounds for

the p-value at acceptance but not the actual p-value. The

results for Test Plan VIC are shown in Table 2.

..........
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Test Plan IVC has nominal values of a 8 .2 with

a discrimination ratio of 2 while Test Plan VIIC has nomi-

nal values of a 8 = .30 with discrimination ratio 1.5.

The decision boundaries for these test plans are shown in

Table 3. Thc p-values; for these test plans are given in

Tables 4 and 5.

4. AN EXAMPLE

The examples we give here follow the examples given

by Bryant and Schmee (1979). Specifically, Neathammer,

Pabst, and Wigginton (1965) describe a production relia-

bility acceptance test of a black box term for an air-

craft. In this problem the risks are to be a = $ = .2

and the discrimination ratio d = 2. Consequently test

plan IV C would be appropriate.

Now assume that in an actual test the failures oc-

curr1ed at (scaled) accumulated test times of 1.0, 1.8,

2.4, 5.0, and 7.8 hours. By looking at the test bounda-

ries shown in Table 3 we see that the test should be con-

tinued at each of the first five stages. Assume that the

sixth failure does not occur prior to the accumulated time.

of 9.74 hours. Then the test will be curtailed with ac-

ceptance at this time. Without knowing the actual time

of the sixth failure it is not possible to give the p-value

eXii(. ly, but lowerT' 110 upper loundo on the p-value can be

founid from Table 11b. 8inue the decision occurs at the

i ..... .. .. . 4



sixth stage we find the bounds to be:

lower bound= .299 < p-value < .334 = upper bound

Next we will consider a test which ends in rejection

rather than acceptance. If in an actual test the failures

occured at accumulated test times of 1.0, 1.8, 2.4, and

3.0 hours, then the test would result in rejection at the

fourth stage. The p-value can be found from Table 4a.

At stage 4 with a final observed value of 3.00, the p-value

can be seen to be .127.
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(a) P-Values at Rejection

Stage 1 2

Observed z 0 .10 .20 .30 .36

P-value 0 .001 .002 .005 .007

Stage 3

Observed z .40 .60 .80 1.00 1.20 1.40 1.60 1.80

P-value .007 .007 .008 .010 .013 .017 .021 .027

Stage 3

Observed z 2.00 2.20 2.40 2.60 2.80 3.00 3.20 3.40

P-value .034 .042 .051 .061 .071 .083 .095 .108

Stage 3

Observed z 3.60 3.80 4.00 4.20 4.40 4.50

P-value .121 .135 .148 .162 .176 .182

(b) P-values at Acceptance

Stage 1 2 3

Lower bound .589 .378 .182

Upper bound 1.000 .589 .378

Table 2. P-values for Test Plan VI C

_ -. "; .. . ___".MOW
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Plan IV C Plan VII C

Reject Boundary Accept Boundary Reject Boundary Accept Boundary

Stage a .a

1 0 2.80 0 3.15

2 .70 4.18 0 4.37

3 2.08 5.58 1.22 5.58

4 3.46 6.96 2.43 6.80

5 4.86 8.34 3.65 6.80

6 6.24 9.74 6.80 6.80

7 7.62 9.74

8 9.74 9.74

Table 3. Decision Boundaries for Test Plans IV C and VII C

.m
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(a) P-Values at Rejection

Stage 1 2

Observed z 0 .20 .40 .60 .70

P-value 0 .005 .018 .037 .049

Stage 3

Observed z .80 1.00 1.20 1.40 1.60 1.80 2.00 2.08

P-value .049 .052 .057 .065 .075 .088 .103 .109

Stage 4

Observed 7 2.20 2.40 2.60 2.80 3.00 3.20 3.40 3.46

P-value .110 .112 .115 .120 .127 .136 .146 .149

Stage 5

Observed z 3.60 3.80 4.00 4.20 4.40 4.60 4.80 4.86

P-value .149 .151 .153 .157 .162 .167 .174 .176

Stage 6

Observed z 5.00 5.20 5.40 5.60 5.80 6.00 6.20 6.24

P-value .176 .177 .179 .181 .185 .188 .193 .194

Stage 7

Observed z 6.40 6.60 6.80 7.00 7.20 7.40 7.60 7.62

P-value .194 .195 .196 .198 .200 .202 .205 .206

Stage 8
Observed z 8.00 8.40 8.80 9.00 9.20 9.40 9.60 9.74

P-value .206 .208 .211 .213 .216 .218 .221 .223

Table li(a) P-values at Rejection for Test Plan IVC.
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(b) P-values at Acceptance

Stage 1 2 3 4 5 6 7 8

Lower bound .753 .580 .464 .386 .334 .299 .253 .223

Upper bound 1.000 .753 .580 .464 .386 .334 .299 .253

Table 4(b) P-values at Acceptance for Test Plan IV C.
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(a) P-Values at Rejection

Stage 1 2 3
0bvcrved z 0 0 .20 .40 .60 .80 1.00 1.22

P-value 0 0 .000 + .003 .008 .017 .030 .049

Stage 4
Observed z 1.40 1.60 1.80 2.00 2.20 2.40 2.43
P-value .050 .054 .061 .070 .082 .097 .099

Stage 5

Observed z 2.60 2.80 3.00 3.20 3.40 3.60 3.65

P-value .100 .103 .108 .116 .125 .136 .140

StaIe 6

Obse)ived z 4.00 4.20 4.40 4.60 4.80 5.00 5.20
P-value .142 .146 .152 .159 .168 .178 .190

Stage 7
Observed z 5.40 5.60 5.80 6.00 6.20 6.40 6.60 6.80
P-value .203 .217 .233 .249 .266 .283 .301 .319

Table 5(a) P-values at Rejection for Test Plan VII C.

(b) P-values at Acceptance

S tage 1 2 3 4 5 6
Lower bound .878 .764 .669 .593 .455 .319
Upper bound 1.000 .878 .764 .669 .593 .455

Table 5(b) P-values at Acceptance for Test Plan VII C.

-..
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